<label id="kuzok"></label>

  • 
    
    <span id="kuzok"><noframes id="kuzok"><label id="kuzok"></label>
  • <li id="kuzok"><tbody id="kuzok"><th id="kuzok"></th></tbody></li>
    <label id="kuzok"></label>
    <rt id="kuzok"></rt>
    <bdo id="kuzok"><meter id="kuzok"></meter></bdo>

    <center id="kuzok"><optgroup id="kuzok"></optgroup></center>
    撥號18861759551

    你的位置:首頁 > 產品展示 > 光纖器件 > 光纖跳線 >Thorlabs多模光纖旋轉接頭跳線

    產品詳細頁
    Thorlabs多模光纖旋轉接頭跳線

    Thorlabs多模光纖旋轉接頭跳線

    • 產品型號:
    • 更新時間:2023-12-19
    • 產品介紹:Thorlabs多模光纖旋轉接頭跳線是任何需要旋轉一個光纖接頭的實驗的整體式解決方案。內置的旋轉接頭允許連接在旋轉節上的光纜自由轉動,而保持其它光纜不動,從而降低實驗中發生損傷的危險。相比將旋轉接頭和跳線分離的方案,無透鏡設計使插入損耗更低,旋轉透射變化更小。
    • 廠商性質:代理商
    • 在線留言

    產品介紹

    品牌Thorlabs價格區間面議
    組件類別光學元件應用領域電子/電池

    Thorlabs多模光纖旋轉接頭跳線

    Thorlabs多模光纖旋轉接頭跳線特性

    鉸接式旋轉接頭可以防止扭轉時對光纖的損壞

    Ø200微米或400微米纖芯的多模光纖

    可選SMA905或FC/PC(2.0 mm窄鍵)接頭

    可定制跳線

    轉動極其平滑

    SM05螺紋(0.535"-40)旋轉接頭用于固定安裝

    Thorlabs的多模(MM)光纖旋轉接頭跳線是任何需要旋轉一個光纖接頭的實驗的整體式解決方案。內置的旋轉接頭允許連接在旋轉節上的光纜自由轉動,而保持其它光纜不動,從而降低實驗中發生損傷的危險。相比將旋轉接頭和跳線分離的方案,無透鏡設計使插入損耗更低,旋轉透射變化更小。

    這種旋轉接頭經過精密加工,并帶有密封軸承,可以進行極其平滑的轉動,具有很長的使用壽命以及在轉動時的低信號強度振動特性。該旋轉接頭具有SM05(0.535英寸-40)安裝螺紋,可以兼容我們的Ø1/2英寸光學元件安裝座。使用我們的C059TC夾具,通過卡入式安裝這些跳線,可以快速安裝連接器Ø0.59英寸的主體。

    這些跳線采用FT200EMT型Ø200 µm纖芯或FT400EMT型Ø400 µm纖芯、數值孔徑0.39的光纖。有一種1米長光纖,它的旋轉接頭兩側有標準的FT020橙色套管,光纖端是一個FC/PC或SMA接頭。每一根旋轉接頭跳線包括兩個保護蓋,用于防止灰塵和其它有害物質落入插芯端。額外的用于SMA接頭的CAPM橡膠或CAPMM金屬蓋,以及用在FC/PC接頭的CAPF塑料或CAPFM金屬蓋也可單獨購買。相比未端接的光纖,這些跳線的大功率因連接而受到限制。詳細信息請查看損傷閾值標簽。

    光遺傳學我們也供應用于光遺傳學的旋轉接頭跳線。它們用在該領域是因為它們對運動樣品提供便利。這些跳線不同之處是它們帶低剖面金屬頭的更輕的黑色插芯,在旋轉接頭的樣品一側插入針頭連接。它們為連接光源和移植的光針頭提供完整方案,并且兼容Thorlabs所有光源和光遺傳學設備。Thorlabs供應用于活體刺激的齊全的光遺傳學設備,包括:用于光遺傳學的可移植光纖針頭、光纖跳線和旋轉接頭跳線以及LED和激光光源。

    旋轉接頭上的SM05外螺紋兼容我們的SM05螺紋元件安裝座,比如這里的LMR05透鏡安裝座。

    旋轉接頭在兩個光纖的金屬套管緊鄰處采用尾部耦合設計減少插入損耗

    定制旋轉接頭跳線

    旋轉接頭跳線的光纖引線為性連接到旋轉接頭上,以保證更高的性能,并且提供整體式的光纖光學元件解決方案。為了和更廣范圍的實驗裝置,我們還提供定制具有不同纖芯和NA的光纖的旋轉接頭跳線。我們還可以制造不同接頭或者不同長度光纖的跳線。為了能夠達到佳性能,我們建議纖芯直徑為200微米或更大的光纖。聯系技術支持訂購定制的旋轉接頭跳線。

     

    In-Stock  Multimode Fiber Optic Patch Cable Selection

    Step Index

    Graded  Index

    Fiber Bundles

    Uncoated

    Coated

    Mid-IR

    Optogenetics

    Specialized Applications

    SMA
     FC/PC
     FC/PC to SMA
     Square-Core FC/PC and SMA

    AR-Coated SMA
     HR-Coated FC/PC
     Beamsplitter-Coated FC/PC

    Fluoride FC and SMA

    Lightweight FC/PC
     Lightweight SMA
     Rotary Joint FC/PC and SMA

    High-Power SMA
     UHV, High-Temp. SMA
     Armored SMA
     Solarization-Resistant SMA

    FC/PC
     FC/PC to LC/PC

    規格

    Specifications

    Item #

    RJPS2

    RJPF2

    RJPS4

    RJPF4

    Connector Type

    SMA
     (10230Aa)

    FC/PC
     (30230C1b)

    SMA
     (10440Aa)

    FC/PC
     (30440C1b)

    Fiber Type

    FT200EMT

    FT400EMT

    Fiber Core Size

    Ø200 µm

    Ø400 µm

    Fiber NA

    0.39 ± 0.02

    Wavelength Range

    400 - 2200 nm

    Length

    1 m on Both Sides of Rotary Joint

    Fiber Jacket

    Ø2 mm, Orange (FT020)

    Rotary  Joint Specifications

    Insertion Loss  Through Rotary Joint

    < 2.0 dB (Transmission >63%)

    Variation in  Insertion Loss
     During Rotation

    ±0.4 dB (Transmission ±8%)

    Start-Up Torque

    < 0.01 N•m

    RPM (Max)c

    10,000

    Lifetime Cycle

    200 - 400 Million Revolutions

    Operating  Temperature

    < 50 °C

    a.     與用于Ø2 mm套管的190088CP消應力套管連接。

    b.     與用于Ø2 mm套管的190066CP消應力套管連接。

    c.     僅針對旋轉接頭部分中的軸承所測的數據。

     

    光纖規格

    Item #

    Fiber Type

    NA

    Core /
     Cladding

    Core
     Diameter

    Cladding
     Diameter

    Coating
     Diameter

    Max Core
     Offset

    Bend Radius
     (Short Term / Long Term)

    RJPF2 and RJPS2

    FT200EMT

    0.39 ± 0.02

    Pure Silica /
     TECS Hard Cladding

    200 ± 5 μm

    225 ± 5 μm

    500 ± 30 μm

    5 µm

    9 mm / 18 mm

    RJPF4 and RJPS4

    FT400EMT

      

    400 ± 8 μm

    425 ± 10 μm

    730 ± 30 μm

    7 µm

    20 mm / 40 mm

     

    多模光纖教程

    在光纖中引導光

    光纖屬于光波導,光波導是一種更為廣泛的光學元件,可以利用全內反射(TIR)在固體或液體結構中限制并引導光。光纖通常可以在眾多應用中使用;常見的例子包括通信、光譜學、照明和傳感器。比較常見的玻璃(石英)纖維使用一種稱之為階躍折射率光纖的結構,如右圖所示。這種光纖的纖芯由一種折射率比外面包層高的材料構成。在光纖中以臨界角入射時,光會在纖芯/包層界面產生全反射,而不會折射到周圍的介質中。為了達到TIR的條件,發射到光纖中入射光的角度必須小于某個角度,即接收角,θacc。根據斯涅耳定律可以計算出這個角:

      其中,ncore為纖芯的折射率,nclad為光纖包層的折射率,n為外部介質的折射率,θcrit為臨界角,θacc為光纖的接收半角。數值孔徑(NA)是一個無量綱量,由光纖制造商用來確定光纖的接收角,表示為:

      對于芯徑(多模)較大的階躍折射率光纖,使用這個等式可以直接計算出NA。NA也可以由實驗確定,通過追蹤遠場光束分布并測量光束中心與光強為大光強5%的點之間的角度即可;但是,直接計算NA得出的值更為準確。

      光纖的全內反射

      光纖中的模式數量

      光在光纖中傳播的每種可能路徑即為光纖的導模。根據纖芯/包層區域的尺寸、折射率和波長,單光纖內可支持從一種到數千種模式。而其中常使用兩種為單模(支持單導模)和多模(支持多種導模)。在多模光纖中,低階模傾向于在空間上將光限制在纖芯內;而高階模傾向于在空間上將光限制在纖芯/包層界面的附近。

      使用一些簡單的計算就可以估算出光纖支持的模(單模或多模)的數量。歸一化頻率,也就是常說的V值,是一個無量綱的數,與自由空間頻率成比例,但被歸為光纖的引導屬性。V值表示為:

      其中V為歸一化頻率(V值),a為纖芯半徑,λ為自由空間波長。多模光纖的V值非常大;例如,芯徑為Ø50 µm、數值孔徑為0.39的多模光纖,在波長為1.5 µm時,V值為40.8。

      對于具有較大V值的多模光纖,可以使用下式近似計算其支持的模式數量:

      上面例子中,芯徑為Ø50 µm、NA為0.39的多模光纖支持大約832種不同的導模,這些模可以同時穿過光纖。

      單模光纖V值必須小于截止頻率2.405,這表示在這個時候,光只耦合到光纖的基模中。為了滿足這個條件,單模光纖的纖芯尺寸和NA要遠小于同波長下的多模光纖。例如SMF-28超單模光纖的標稱NA為0.14,芯徑為Ø8.2 µm,在波長為1550nm時,V值為2.404。

      衰減來源

      光纖損耗,也稱之為衰減,是光纖的特性,可以通過量化來預測光纖裝置內的總透射功率損耗。這些損耗來源一般與波長相關,因光纖的使用材料或光纖的彎曲等而有所差異。常見衰減來源的詳情如下:

      吸收

      標準光纖中的光通過固體材料引導,因此,光在光纖中傳播會因吸收而產生損耗。標準光纖使用熔融石英制造,經優化可在波長1300 nm-1550 nm的范圍內傳播。波長更長(>2000nm)時,熔融石英內的多聲子相互作用造成大量吸收。使用氟化鋯、氟化銦等氟氧物玻璃制造中紅外光纖,主要是因為它們處于這些波長范圍時損耗較低。氟化鋯、氟化銦的多聲子邊分別為~3.6 µm和~4.6 µm。

      光纖內的污染物也會造成吸收損耗。其中一種污染物就是困在玻璃纖維中的水分子,可以吸收波長在1300 nm和2.94 µm的光。由于通信信號和某些激光器也是在這個區域里工作,光纖中的任意水分子都會明顯地衰減信號。

      玻璃纖維中離子的濃度通常由制造商控制,以便調節光纖的傳播/衰減屬性。例如,石英中本來就存在羥基(OH-),可以吸收近紅外到紅外光譜的光。因此,羥基濃度較低的光纖更適合在通信波長下傳播。而羥基濃度較高的光纖在紫外波長范圍時有助于傳播,因此,更適合對熒光或UV-VIS光譜學等應用感興趣的用戶。

      散射

      對于大多數光纖應用來說,光散射也是損耗的來源,通常在光遇到介質的折射率發生變化時產生。這些變化可以是由雜質、微粒或氣泡引起的外在變化;也可以是由玻璃密度的波動、成分或相位態引起的內在變化。散射與光的波長呈負相關關系,因此,在光譜中的紫外或藍光區域等波長較短時,散射損耗會比較大。使用恰當的光纖清潔、操作和存儲存步驟可以盡可能地減少光纖*的雜質,避免產生較大的散射損耗。

      彎曲損耗

      因光纖的外部和內部幾何發生變化而產生的損耗稱之為彎曲損耗。通常包含兩大類:宏彎損耗和微彎損耗。

      宏彎損耗造成的衰減

        微彎損耗造成的衰減

        宏彎損耗一般與光纖的物理彎曲相關;例如,將其卷成圈。如右圖所示,引導的光在空間上分布在光纖的纖芯和包層區域。以某半徑彎曲光纖時,在彎曲外半徑的光不能在不超過光速時維持相同的空間模分布。相反,由于輻射能量會損耗到周邊環境中。彎曲半徑較大時,與彎曲相關的損耗會比較小;但彎曲半徑小于光纖的推薦彎曲半徑時,彎曲損耗會非常大。光纖可以在彎曲半徑較小時進行短時間工作;但如果要長期儲存,彎曲半徑應該大于推薦值。使用恰當的儲存條件(溫度和彎曲半徑)可以降低對光纖造成性損傷的幾率;FSR1光纖纏繞盤設計用來大程度地減少高彎曲損耗。

        微彎損耗由光纖的內部幾何,尤其是纖芯和包層發生變化而產生。光纖結構中的這些隨機變化(即凸起)會破壞全內反射所需的條件,使得傳播的光耦合到非傳播模中,造成泄露(詳情請看右圖)。與由彎曲半徑控制的宏彎損耗不同,微彎損耗是由制造光纖時在光纖內造成的性缺陷而產生。

        包層模

        雖然多模光纖中的大多數光通過纖芯內的TIR引導,但是由于TIR發生在包層與涂覆層/保護層的界面,在纖芯和包層內引導光的高階模也可能存在。這樣就產生了我們所熟知的包層模。這樣的例子可在右邊的光束分布測量中看到,其中體現了包層模包層中的光強比纖芯中要高。這些模可以不傳播(即它們不滿足TIR的條件),也可以在一段很長的光纖中傳播。由于包層模一般為高階模,在光纖彎曲和出現微彎缺陷時,它們就是損耗的來源。通過接頭連接兩個光纖時包層模會消失,因為它們不能在光纖之間輕松耦合。

        由于包層模對光束空間輪廓的影響,有些應用(比如發射到自由空間中)中可能不需要包層模。光纖較長時,這些模會自然衰減。對于長度小于10 m的光纖,消除包層模的一種辦法就是將光纖纏繞在半徑合適的芯軸上,這樣能保留需要的傳播模式。

        在FT200EMT多模光纖與M565F1 LED的光束輪廓中,展現了包層而不是纖芯引導的光。

        入纖方式

        多模光纖未充滿條件

        對于在NA較大時接收光的多模光纖來說,光耦合到光纖的的條件(光源類型、光束直徑、NA)對性能有著極大影響。在耦合界面,光的光束直徑和NA小于光纖的芯徑和NA時,就出現了未充滿的入纖條件。這種情況的常見例子就是將激光光源發射到較大的多模光纖。從下面的圖和光束輪廓測量可以看出,未充滿時會使光在空間上集中到光纖的中心,優先充滿低階模,而非高階模。因此,它們對宏彎損耗不太敏感,也沒有包層模。這種條件下,所測的插入損耗也會小于典型值,光纖纖芯處有著較高的功率密度。

        展示未充滿條件的圖(左邊)和使用FT200EMT多模光纖進行的光束輪廓測量(右邊)。

        多模光纖過滿條件

        在耦合界面,光束直徑和NA大于光纖的芯徑和NA時就出現了過滿的情況。實現這種條件的一個方法就是將LED光源的光發射到較小的多模光纖中。過滿時會將整個纖芯和部分包層裸露在光中,均勻充滿低階模和高階模(請看下圖),增加耦合到光纖包層模的可能性。高階模比例的增加意味著過滿光纖對彎曲損耗會更為敏感。在這種條件下,所測的插入損耗會大于典型值,與未充滿光纖條件相比,會產生較高的總輸出功率。

        展示過滿條件的圖(左邊)和使用FT200EMT多模光纖進行的光束輪廓測量(右邊)。

        多模光纖未充滿或過滿條件各有優劣,這取決于特定應用的要求。如需測量多模光纖的基準性能,Thorlabs建議使用光束直徑為光纖芯徑70-80%的入纖條件。過滿條件在短距離時輸出功率更大;而長距離(>10 - 20 m)時,對衰減較為敏感的高階模會消失。

         

        損傷閥值

        激光誘導的光纖損傷

         

        Quick Links

        Damage at the Air / Glass Interface

        Intrinsic Damage Threshold

        Preparation and Handling of Optical Fibers

         

        空氣-玻璃界面的損傷

        空氣/玻璃界面有幾種潛在的損傷機制。自由空間耦合或使用光學接頭匹配兩根光纖時,光會入射到這個界面。如果光的強度很高,就會降低功率的適用性,并給光纖造成性損傷。而對于使用環氧樹脂將接頭與光纖固定的終端光纖而言,高強度的光產生的熱量會使環氧樹脂熔化,進而在光路中的光纖表面留下殘留物。

         

        損傷的光纖端面

          未損傷的光纖端面

          裸纖端面的損傷機制

          光纖端面的損傷機制可以建模為大光學元件,紫外熔融石英基底的工業標準損傷閾值適用于基于石英的光纖(參考右表)。但是與大光學元件不同,與光纖空氣/璃界面相關的表面積和光束直徑都非常小,耦合單模(SM)光纖時尤其如此,因此,對于給定的功率密度,入射到光束直徑較小的光纖的功率需要比較低。

          右表列出了兩種光功率密度閾值:一種理論損傷閾值,一種"實際安全水平"。一般而言,理論損傷閾值代表在光纖端面和耦合條件非常好的情況下,可以入射到光纖端面且沒有損傷風險的大功率密度估算值。而"實際安全水平"功率密度代表光纖損傷的低風險。超過實際安全水平操作光纖或元件也是有可以的,但用戶必須遵守恰當的適用性說明,并在使用前在低功率下驗證性能。

          多模(MM)光纖的有效面積由纖芯直徑確定,一般要遠大于SM光纖的MFD值。如要獲得佳耦合效果,Thorlabs建議光束的光斑大小聚焦到纖芯直徑的70 - 80%。由于多模光纖的有效面積較大,降低了光纖端面的功率密度,因此,較高的光功率(一般上千瓦的數量級)可以無損傷地耦合到多模光纖中。

           

          Estimated Optical Power Densities on Air / Glass Interfacea

          Type

          Theoretical Damage Thresholdb

          Practical Safe Levelc

          CW(Average Power)

          ~1 MW/cm2

          ~250 kW/cm2

          10 ns Pulsed(Peak Power)

          ~5 GW/cm2

          ~1 GW/cm2

          所有值針對無終端(裸露)的石英光纖,適用于自由空間耦合到潔凈的光纖端面。

          這是可以入射到光纖端面且沒有損傷風險的大功率密度估算值。用戶在高功率下工作前,必須驗證系統中光纖元件的性能與可靠性,因其與系統有著緊密的關系。

          這是在大多數工作條件下,入射到光纖端面且不會損傷光纖的安全功率密度估算值。

          插芯/接頭終端相關的損傷機制

          有終端接頭的光纖要考慮更多的功率適用條件。光纖一般通過環氧樹脂粘合到陶瓷或不銹鋼插芯中。光通過接頭耦合到光纖時,沒有進入纖芯并在光纖中傳播的光會散射到光纖的外層,再進入插芯中,而環氧樹脂用來將光纖固定在插芯中。如果光足夠強,就可以熔化環氧樹脂,使其氣化,并在接頭表面留下殘渣。這樣,光纖端面就出現了局部吸收點,造成耦合效率降低,散射增加,進而出現損傷。

          與環氧樹脂相關的損傷取決于波長,出于以下幾個原因。一般而言,短波長的光比長波長的光散射更強。由于短波長單模光纖的MFD較小,且產生更多的散射光,則耦合時的偏移也更大。

          為了大程度地減小熔化環氧樹脂的風險,可以在光纖端面附近的光纖與插芯之間構建無環氧樹脂的氣隙光纖接頭。我們的高功率多模光纖跳線就使用了這種設計特點的接頭。

          曲線圖展現了帶終端的單模石英光纖的大概功率適用水平。每條線展示了考慮具體損傷機制估算的功率水平。大功率適用性受到所有相關損傷機制的低功率水平限制(由實線表示)。

          確定具有多種損傷機制的功率適用性

          光纖跳線或組件可能受到多種途徑的損傷(比如,光纖跳線),而光纖適用的大功率始終受到與該光纖組件相關的低損傷閾值的限制。

          例如,右邊曲線圖展現了由于光纖端面損傷和光學接頭造成的損傷而導致單模光纖跳線功率適用性受到限制的估算值。有終端的光纖在給定波長下適用的總功率受到在任一給定波長下,兩種限制之中的較小值限制(由實線表示)。在488 nm左右工作的單模光纖主要受到光纖端面損傷的限制(藍色實線),而在1550
          nm下工作的光纖受到接頭造成的損傷的限制(紅色實線)。

          對于多模光纖,有效模場由纖芯直徑確定,一般要遠大于SM光纖的有效模場。因此,其光纖端面上的功率密度更低,較高的光功率(一般上千瓦的數量級)可以無損傷地耦合到光纖中(圖中未顯示)。而插芯/接頭終端的損傷限制保持不變,這樣,多模光纖的大適用功率就會受到插芯和接頭終端的限制。

          請注意,曲線上的值只是在合理的操作和對準步驟幾乎不可能造成損傷的情況下粗略估算的功率水平值。值得注意的是,光纖經常在超過上述功率水平的條件下使用。不過,這樣的應用一般需要專業用戶,并在使用之前以較低的功率進行測試,盡量降低損傷風險。但即使如此,如果在較高的功率水平下使用,則這些光纖元件應該被看作實驗室消耗品。

          光纖內的損傷閾值

          除了空氣玻璃界面的損傷機制外,光纖本身的損傷機制也會限制光纖使用的功率水平。這些限制會影響所有的光纖組件,因為它們存在于光纖本身。光纖內的兩種損傷包括彎曲損耗和光暗化損傷。

          制備和處理光纖

          通用清潔和操作指南

          建議將這些通用清潔和操作指南用于所有的光纖產品。而對于具體的產品,用戶還是應該根據輔助文獻或手冊中給出的具體指南操作。只有遵守了所有恰當的清潔和操作步驟,損傷閾值的計算才會適用。

          安裝或集成光纖(有終端的光纖或裸纖)前應該關掉所有光源,以避免聚焦的光束入射在接頭或光纖的脆弱部分而造成損傷。

          光纖適用的功率直接與光纖/接頭端面的質量相關。將光纖連接到光學系統前,一定要檢查光纖的末端。端面應該是干凈的,沒有污垢和其它可能導致耦合光散射的污染物。另外,如果是裸纖,使用前應該剪切,用戶應該檢查光纖末端,確保切面質量良好。

          如果將光纖熔接到光學系統,用戶先應該在低功率下驗證熔接的質量良好,然后在高功率下使用。熔接質量差,會增加光在熔接界面的散射,從而成為光纖損傷的來源。

          對準系統和優化耦合時,用戶應該使用低功率;這樣可以大程度地減少光纖其他部分(非纖芯)的曝光。如果高功率光束聚焦在包層、涂覆層或接頭,有可能產生散射光造成的損傷。

          高功率下使用光纖的注意事項

          一般而言,光纖和光纖元件應該要在安全功率水平限制之內工作,但在理想的條件下(佳的光學對準和非常干凈的光纖端面),光纖元件適用的功率可能會增大。用戶先必須在他們的系統內驗證光纖的性能和穩定性,然后再提高輸入或輸出功率,遵守所有所需的安全和操作指導。以下事項是一些有用的建議,有助于考慮在光纖或組件中增大光學功率。

          要防止光纖損傷光耦合進光纖的對準步驟也是重要的。在對準過程中,在取得佳耦合前,光很容易就聚焦到光纖某部位而不是纖芯。如果高功率光束聚焦在包層或光纖其它部位時,會發生散射引起損傷

          使用光纖熔接機將光纖組件熔接到系統中,可以增大適用的功率,因為它可以大程度地減少空氣/光纖界面損傷的可能性。用戶應該遵守所有恰當的指導來制備,并進行高質量的光纖熔接。熔接質量差可能導致散射,或在熔接界面局部形成高熱區域,從而損傷光纖。

          連接光纖或組件之后,應該在低功率下使用光源測試并對準系統。然后將系統功率緩慢增加到所希望的輸出功率,同時周期性地驗證所有組件對準良好,耦合效率相對光學耦合功率沒有變化。

          由于劇烈彎曲光纖造成的彎曲損耗可能使光從受到應力的區域漏出。在高功率下工作時,大量的光從很小的區域(受到應力的區域)逃出,從而在局部形成產生高熱量,進而損傷光纖。請在操作過程中不要破壞或突然彎曲光纖,以盡可能地減少彎曲損耗。

          用戶應該針對給定的應用選擇合適的光纖。例如,大模場光纖可以良好地代替標準的單模光纖在高功率應用中使用,因為前者可以提供更佳的光束質量,更大的MFD,且可以降低空氣/光纖界面的功率密度。

          階躍折射率石英單模光纖一般不用于紫外光或高峰值功率脈沖應用,因為這些應用與高空間功率密度相關。

           

          旋轉接頭跳線,Ø200微米光纖

          Item #

          Fiber

          Core
           Diameter

          Cladding
           Diameter

          NA

          Bend Radius
           (Short Term/Long Term)

          Wavelength
           Range

          Attenuation
           Plot

          Connectors

          Jacket

          RJPS2

          FT200EMT

          200 ± 5 µm

          225 ± 5 µm

          0.39

          9 mm / 18 mm

          400 - 2200 nm
           (Low OH)

          SMA905 (10230Aa)

          FT020

          (Ø2 mm)

          RJPF2

          FC/PC (30230C1b)

          a.    與用于Ø2 mm套管的190088CP消應力套管連接。

          b.    與用于Ø2 mm套管的190066CP消應力套管連接。

           

          產品型號

          公英制通用

          RJPS2

          SMA到SMA,Ø200微米,0.39數值孔徑旋轉跳線,長2米

          RJPF2

          FC/PC到FC/PC,Ø200微米,0.39數值孔徑旋轉跳線,長2米

           

          旋轉接頭跳線,Ø400微米光纖

          Item #

          Fiber

          Core
           Diameter

          Cladding
           Diameter

          NA

          Bend Radius
           (Short Term/Long Term)

          Wavelength
           Range

          Attenuation
           Plot

          Connectors

          Jacket

          RJPS4

          FT400EMT

          400 ± 8 µm

          425 ± 10 µm

          0.39

          20 mm / 40 mm

          400 - 2200 nm
           (Low OH)

          SMA905 (10440Aa)

          FT020

          (Ø2 mm)

          RJPF4

          FC/PC (30440C1b)

          與用于Ø2 mm套管的190088CP消應力套管連接。

          與用于Ø2 mm套管的190066CP消應力套管連接。

           

          產品型號

          公英制通用

          RJPS4

          SMA到SMA,Ø400微米,0.39數值孔徑旋轉跳線,長2米

          RJPF4

          FC/PC到FC/PC,Ø400微米,0.39數值孔徑旋轉跳線,長2米

          損傷的光纖端面

            留言框

            • 產品:

            • 您的單位:

            • 您的姓名:

            • 聯系電話:

            • 常用郵箱:

            • 省份:

            • 詳細地址:

            • 補充說明:

            • 驗證碼:

              請輸入計算結果(填寫阿拉伯數字),如:三加四=7

            聯系我們

            地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
            24小時在線客服,為您服務!

            版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

            在線咨詢
            QQ客服
            QQ:17041053
            電話咨詢
            0510-68836815
            關注微信
            主站蜘蛛池模板: 色婷婷综合缴情综免费观看| 99久久综合久中文字幕| 久久乐国产综合亚洲精品| 色偷偷尼玛图亚洲综合| 国产成人综合久久精品尤物| 亚洲综合在线另类色区奇米 | 亚洲综合亚洲综合网成人| 亚洲国产成人久久综合碰碰动漫3d | 色婷婷综合久久久久中文字幕| 97久久国产综合精品女不卡| 色综合天天综合网站中国| 久久婷婷五月综合色国产香蕉| 色婷婷五月综合丁香中文字幕| 天堂久久天堂AV色综合| 综合久久一区二区三区| 香蕉99久久国产综合精品宅男自| 97se亚洲综合在线| 婷婷亚洲综合五月天小说 | 天天影视色香欲综合免费| 九色综合狠狠综合久久| 香蕉尹人综合在线观看| 婷婷五月综合激情| 亚洲精品第一综合99久久| 亚洲精品综合一二三区在线| 亚洲国产综合久久天堂| 激情综合色综合久久综合| 伊人伊成久久人综合网777| 国产成人99久久亚洲综合精品| 国产精品成人免费综合| 天天做天天爱天天爽综合网| 婷婷六月久久综合丁香76| 狠狠色丁香婷婷综合潮喷| 天天躁日日躁狠狠躁综合| 亚洲AⅤ优女AV综合久久久| 狠狠色综合网站久久久久久久高清| 一本色道久久88综合日韩精品| 久久93精品国产91久久综合| 亚洲成色在线综合网站| 亚洲a∨国产av综合av下载| 亚洲国产精品成人AV无码久久综合影院 | 亚洲国产综合91精品麻豆|