国产成人久久精品二区三区,国产91青青成人a在线,亚洲精品成人无码中文毛片不卡,成人精品一区二区三区中文字幕

撥號18861759551

你的位置:首頁 > 產品展示 > 光纖器件 > 單模光纖 >Thorlabs光敏單模光纖

產品詳細頁
Thorlabs光敏單模光纖

Thorlabs光敏單模光纖

  • 產品型號:
  • 更新時間:2024-04-19
  • 產品介紹:Thorlabs光敏單模光纖
    Thorlabs提供多種對紫外輻射高度敏感的光敏單模光纖。這些光纖和傳輸光纖的熔接損耗低,適合各種應用,比如,將光纖布拉格光柵寫入用于通信系統的光纖上。關于每種產品的規格請參看下表。剝離光纖的緩沖層以便安裝接頭時,我們推薦使用T06S13作為剝纖工具。
  • 廠商性質:經銷商
  • 在線留言

產品介紹

品牌Thorlabs價格區間面議
組件類別光學元件應用領域電子/電池

Thorlabs光敏單模光纖


Thorlabs光敏單模光纖

Thorlabs提供多種對紫外輻射高度敏感的光敏單模光纖。這些光纖和傳輸光纖的熔接損耗低,適合各種應用,比如,將光纖布拉格光柵寫入用于通信系統的光纖上。關于每種產品的規格請參看下表。剝離光纖的緩沖層以便安裝接頭時,我們推薦使用T06S13作為剝纖工具。

Item #

Type

Operating Wavelength

Mode Field Diameter

Cut-Off Wavelength

GF1

Standard

1500 - 1600 nm

9.3 ± 0.5 µm at 1310 nm10.5 ± 1.0 µm at 1550 nm

1260 ± 75 nm

GF1AA

Standard

1500 - 1600 nm

10.5 ± 0.8 µm at 1550 nm

1350 ± 100 nm

GF3

Standard

1500 - 1600 nm

7.5 ± 0.5 µm at 1550 nm

1350 ± 50 nm

GF1B

Low Loss

1500 - 1600 nm

10.4 ± 0.8 µm at 1550 nm

1260 ± 100 nm

GF4A

Cladding Mode Offset

1500 - 1600 nm

4.0 ± 0.3 µm at 1550 nm

1350 ± 100 nm

PS1060

Select Cut-Off

980 - 1060 nm

6.2 ± 0.8 µm at 1060 nm

920 ± 50 nm

PS-PM980

Polarization Maintaining

970 - 1550 nm

6.6 ± 1.0 µm at 980 nm

900 ± 70 nm


損傷閥值

激光誘導的光纖損傷

以下教程詳述了無終端(裸露的)、有終端光纖以及其他基于激光光源的光纖元件的損傷機制,包括空氣-玻璃界面(自由空間耦合或使用接頭時)的損傷機制和光纖玻璃內的損傷機制。諸如裸纖、光纖跳線或熔接耦合器等光纖元件可能受到多種潛在的損傷(比如,接頭、光纖端面和裝置本身)。光纖適用的大功率始終受到這些損傷機制的小值的限制。

雖然可以使用比例關系和一般規則估算損傷閾值,但是,光纖的損傷閾值在很大程度上取決于應用和特定用戶。用戶可以以此教程為指南,估算大程度降低損傷風險的安全功率水平。如果遵守了所有恰當的制備和適用性指導,用戶應該能夠在的大功率水平以下操作光纖元件;如果有元件并未大功率,用戶應該遵守下面描述的"實際安全水平"該,以安全操作相關元件。可能降低功率適用能力并給光纖元件造成損傷的因素包括,但不限于,光纖耦合時未對準、光纖端面受到污染或光纖本身有瑕疵。關于特定應用中光纖功率適用能力的深入討論,請聯系技術支持techsupport-cn@thorlabs.com。

Quick Links

Damage at the Air / Glass Interface

Intrinsic Damage Threshold

Preparation and Handling of Optical Fibers


空氣-玻璃界面的損傷

空氣/玻璃界面有幾種潛在的損傷機制。自由空間耦合或使用光學接頭匹配兩根光纖時,光會入射到這個界面。如果光的強度很高,就會降低功率的適用性,并給光纖造成性損傷。而對于使用環氧樹脂將接頭與光纖固定的終端光纖而言,高強度的光產生的熱量會使環氧樹脂熔化,進而在光路中的光纖表面留下殘留物。


損傷的光纖端面

Thorlabs光敏單模光纖

    未損傷的光纖端面

    裸纖端面的損傷機制

    光纖端面的損傷機制可以建模為大光學元件,紫外熔融石英基底的工業標準損傷閾值適用于基于石英的光纖(參考右表)。但是與大光學元件不同,與光纖空氣/璃界面相關的表面積和光束直徑都非常小,耦合單模(SM)光纖時尤其如此,因此,對于給定的功率密度,入射到光束直徑較小的光纖的功率需要比較低。

    右表列出了兩種光功率密度閾值:一種理論損傷閾值,一種"實際安全水平"。一般而言,理論損傷閾值代表在光纖端面和耦合條件非常好的情況下,可以入射到光纖端面且沒有損傷風險的大功率密度估算值。而"實際安全水平"功率密度代表光纖損傷的低風險。超過實際安全水平操作光纖或元件也是有可以的,但用戶必須遵守恰當的適用性說明,并在使用前在低功率下驗證性能。

    計算單模光纖和多模光纖的有效面積單模光纖的有效面積是通過模場直徑(MFD)定義的,它是光通過光纖的橫截面積,包括纖芯以及部分包層。耦合到單模光纖時,入射光束的直徑必須匹配光纖的MFD,才能達到良好的耦合效率。

    例如,SM400單模光纖在400 nm下工作的模場直徑(MFD)大約是?3 µm,而SMF-28 Ultra單模光纖在1550 nm下工作的MFD為?10.5 µm。則兩種光纖的有效面積可以根據下面來計算:

    SM400 Fiber:Area= Pi x (MFD/2)2 = Pi x (1.5µm)2 = 7.07 µm2= 7.07 x 10-8cm2
    SMF-28 Ultra Fiber: Area = Pi x (MFD/2)2 = Pi x (5.25 µm)2= 86.6 µm2= 8.66 x 10-7cm2

    為了估算光纖端面適用的功率水平,將功率密度乘以有效面積。請注意,該計算假設的是光束具有均勻的強度分布,但其實,單模光纖中的大多數激光束都是高斯形狀,使得光束中心的密度比邊緣處更高,因此,這些計算值將略高于損傷閾值或實際安全水平對應的功率。假設使用連續光源,通過估算的功率密度,就可以確定對應的功率水平:

    SM400 Fiber: 7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71 mW (理論損傷閾值)
    7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18 mW (實際安全水平)

    SMF-28 Ultra Fiber: 8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW (理論損傷閾值)
    8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210 mW (實際安全水平)

    多模(MM)光纖的有效面積由纖芯直徑確定,一般要遠大于SM光纖的MFD值。如要獲得佳耦合效果,Thorlabs建議光束的光斑大小聚焦到纖芯直徑的70 - 80%。由于多模光纖的有效面積較大,降低了光纖端面的功率密度,因此,較高的光功率(一般上千瓦的數量級)可以無損傷地耦合到多模光纖中。


    Estimated Optical Power Densities on Air / Glass Interfacea

    Type

    Theoretical Damage Thresholdb

    Practical Safe Levelc

    CW(Average Power)

    ~1 MW/cm2

    ~250 kW/cm2

    10 ns Pulsed(Peak Power)

    ~5 GW/cm2

    ~1 GW/cm2


    所有值針對無終端(裸露)的石英光纖,適用于自由空間耦合到潔凈的光纖端面。

    這是可以入射到光纖端面且沒有損傷風險的大功率密度估算值。用戶在高功率下工作前,必須驗證系統中光纖元件的性能與可靠性,因其與系統有著緊密的關系。

    這是在大多數工作條件下,入射到光纖端面且不會損傷光纖的安全功率密度估算值。

    插芯/接頭終端相關的損傷機制

    有終端接頭的光纖要考慮更多的功率適用條件。光纖一般通過環氧樹脂粘合到陶瓷或不銹鋼插芯中。光通過接頭耦合到光纖時,沒有進入纖芯并在光纖中傳播的光會散射到光纖的外層,再進入插芯中,而環氧樹脂用來將光纖固定在插芯中。如果光足夠強,就可以熔化環氧樹脂,使其氣化,并在接頭表面留下殘渣。這樣,光纖端面就出現了局部吸收點,造成耦合效率降低,散射增加,進而出現損傷。

    與環氧樹脂相關的損傷取決于波長,出于以下幾個原因。一般而言,短波長的光比長波長的光散射更強。由于短波長單模光纖的MFD較小,且產生更多的散射光,則耦合時的偏移也更大。

    為了大程度地減小熔化環氧樹脂的風險,可以在光纖端面附近的光纖與插芯之間構建無環氧樹脂的氣隙光纖接頭。我們的高功率多模光纖跳線就使用了這種設計特點的接頭。

    曲線圖展現了帶終端的單模石英光纖的大概功率適用水平。每條線展示了考慮具體損傷機制估算的功率水平。大功率適用性受到所有相關損傷機制的低功率水平限制(由實線表示)。

    確定具有多種損傷機制的功率適用性

    光纖跳線或組件可能受到多種途徑的損傷(比如,光纖跳線),而光纖適用的大功率始終受到與該光纖組件相關的低損傷閾值的限制。

    例如,右邊曲線圖展現了由于光纖端面損傷和光學接頭造成的損傷而導致單模光纖跳線功率適用性受到限制的估算值。有終端的光纖在給定波長下適用的總功率受到在任一給定波長下,兩種限制之中的較小值限制(由實線表示)。在488 nm左右工作的單模光纖主要受到光纖端面損傷的限制(藍色實線),而在1550
    nm下工作的光纖受到接頭造成的損傷的限制(紅色實線)。

    對于多模光纖,有效模場由纖芯直徑確定,一般要遠大于SM光纖的有效模場。因此,其光纖端面上的功率密度更低,較高的光功率(一般上千瓦的數量級)可以無損傷地耦合到光纖中(圖中未顯示)。而插芯/接頭終端的損傷限制保持不變,這樣,多模光纖的大適用功率就會受到插芯和接頭終端的限制。

    請注意,曲線上的值只是在合理的操作和對準步驟幾乎不可能造成損傷的情況下粗略估算的功率水平值。值得注意的是,光纖經常在超過上述功率水平的條件下使用。不過,這樣的應用一般需要專業用戶,并在使用之前以較低的功率進行測試,盡量降低損傷風險。但即使如此,如果在較高的功率水平下使用,則這些光纖元件應該被看作實驗室消耗品。

    光纖內的損傷閾值

    除了空氣玻璃界面的損傷機制外,光纖本身的損傷機制也會限制光纖使用的功率水平。這些限制會影響所有的光纖組件,因為它們存在于光纖本身。光纖內的兩種損傷包括彎曲損耗和光暗化損傷。

    彎曲損耗

    光在纖芯內傳播入射到纖芯包層界面的角度大于臨界角會使其無法全反射,光在某個區域就會射出光纖,這時候就會產生彎曲損耗。射出光纖的光一般功率密度較高,會燒壞光纖涂覆層和周圍的松套管。

    有一種叫做雙包層的特種光纖,允許光纖包層(第二層)也和纖芯一樣用作波導,從而降低彎折損傷的風險。通過使包層/涂覆層界面的臨界角高于纖芯/包層界面的臨界角,射出纖芯的光就會被限制在包層內。這些光會在幾厘米或者幾米的距離而不是光纖內的某個局部點漏出,從而大限度地降低損傷。Thorlabs生產并銷售0.22 NA雙包層多模光纖,它們能將適用功率提升百萬瓦的范圍。

    光暗化光纖內的第二種損傷機制稱為光暗化或負感現象,一般發生在紫外或短波長可見光,尤其是摻鍺纖芯的光纖。在這些波長下工作的光纖隨著曝光時間增加,衰減也會增加。引起光暗化的原因大部分未可知,但可以采取一些列措施來緩解。例如,研究發現,羥基離子(OH)含量非常低的光纖可以抵抗光暗化,其它摻雜物比如氟,也能減少光暗化。

    即使采取了上述措施,所有光纖在用于紫外光或短波長光時還是會有光暗化產生,因此用于這些波長下的光纖應該被看成消耗品。

    制備和處理光纖

    通用清潔和操作指南

    建議將這些通用清潔和操作指南用于所有的光纖產品。而對于具體的產品,用戶還是應該根據輔助文獻或手冊中給出的具體指南操作。只有遵守了所有恰當的清潔和操作步驟,損傷閾值的計算才會適用。

    安裝或集成光纖(有終端的光纖或裸纖)前應該關掉所有光源,以避免聚焦的光束入射在接頭或光纖的脆弱部分而造成損傷。

    光纖適用的功率直接與光纖/接頭端面的質量相關。將光纖連接到光學系統前,一定要檢查光纖的末端。端面應該是干凈的,沒有污垢和其它可能導致耦合光散射的污染物。另外,如果是裸纖,使用前應該剪切,用戶應該檢查光纖末端,確保切面質量良好。

    如果將光纖熔接到光學系統,用戶先應該在低功率下驗證熔接的質量良好,然后在高功率下使用。熔接質量差,會增加光在熔接界面的散射,從而成為光纖損傷的來源。

    對準系統和優化耦合時,用戶應該使用低功率;這樣可以大程度地減少光纖其他部分(非纖芯)的曝光。如果高功率光束聚焦在包層、涂覆層或接頭,有可能產生散射光造成的損傷。

    高功率下使用光纖的注意事項

    一般而言,光纖和光纖元件應該要在安全功率水平限制之內工作,但在理想的條件下(佳的光學對準和非常干凈的光纖端面),光纖元件適用的功率可能會增大。用戶先必須在他們的系統內驗證光纖的性能和穩定性,然后再提高輸入或輸出功率,遵守所有所需的安全和操作指導。以下事項是一些有用的建議,有助于考慮在光纖或組件中增大光學功率。

    要防止光纖損傷光耦合進光纖的對準步驟也是重要的。在對準過程中,在取得佳耦合前,光很容易就聚焦到光纖某部位而不是纖芯。如果高功率光束聚焦在包層或光纖其它部位時,會發生散射引起損傷

    使用光纖熔接機將光纖組件熔接到系統中,可以增大適用的功率,因為它可以大程度地減少空氣/光纖界面損傷的可能性。用戶應該遵守所有恰當的指導來制備,并進行高質量的光纖熔接。熔接質量差可能導致散射,或在熔接界面局部形成高熱區域,從而損傷光纖。

    連接光纖或組件之后,應該在低功率下使用光源測試并對準系統。然后將系統功率緩慢增加到所希望的輸出功率,同時周期性地驗證所有組件對準良好,耦合效率相對光學耦合功率沒有變化。

    由于劇烈彎曲光纖造成的彎曲損耗可能使光從受到應力的區域漏出。在高功率下工作時,大量的光從很小的區域(受到應力的區域)逃出,從而在局部形成產生高熱量,進而損傷光纖。請在操作過程中不要破壞或突然彎曲光纖,以盡可能地減少彎曲損耗。

    用戶應該針對給定的應用選擇合適的光纖。例如,大模場光纖可以良好地代替標準的單模光纖在高功率應用中使用,因為前者可以提供更佳的光束質量,更大的MFD,且可以降低空氣/光纖界面的功率密度。

    階躍折射率石英單模光纖一般不用于紫外光或高峰值功率脈沖應用,因為這些應用與高空間功率密度相關。


    光敏光纖

    改善的光敏特性

    和傳輸光纖的熔接損耗低

    這些光敏單模光纖對紫外輻射高度敏感,并且與和SMF-28e模式匹配。這些光纖設計用于減少工業標準的通信光纖相關的光纖布拉格光柵的寫入時間,并且易于與工業標準的光纖熔接。

    在連接的準備過程中去除光纖的緩沖層時,我們推薦T06S13作為剝纖工具。


    Item #

    OperatingWavelength

    MFD @ 1310 nm

    MFD @ 1550 nm

    Cladding

    Coating

    Cut-OffWavelength

    NA

    CoreIndex

    CladdingIndex

    ProofTest

    GF1

    1500 - 1600 nm

    9.3 ± 0.5 µm

    10.5 ± 1.0 µm

    125 ± 1.5 µm

    250 ± 20 µm

    1260 ± 75 nm

    0.13

    Calla

    Calla

    ≥100 kpsi

    GF1AA

    1500 - 1600 nm

    -

    10.5 ± 0.8 µm

    125 ± 1.5 µm

    250 ± 20 µm

    1350 ± 100 nm

    0.13

    Calla

    Calla

    ≥100 kpsi

    GF3

    1500 - 1600 nm

    -

    7.5
    ± 0.5 µm

    125 ± 1.0 µm

    245 ± 15 µm

    1350 ± 50 nm

    0.16

    Calla

    Calla

    ≥100 kpsi


    關于這些光纖的折射率信息,請聯系技術支持。我們不能在網站上公布此數據。


    產品型號

    公英制通用

    GF1

    光敏單模,1500-1600納米,10.5微米MFD,數值孔徑0.13

    GF1AA

    光敏單模,1500-1600納米,10.5微米MFD,數值孔徑0.13

    GF3

    光敏單模,1500-1600納米,7.5微米MFD,數值孔徑0.16


    低損耗光敏光纖

    背景衰減低

    能與SMF-28e熔接

    對紫外光敏感

    與標準傳輸光纖相比,低損耗光敏光纖對紫外光具有高得多的光敏特性。該光纖是為與SMF-28e光纖熔接而特別設計的,并可用于波分復用中。衰減降低使該光纖可用于更長距離的傳輸,并能在制造的光纖光學器件中減少插入損耗

    在連接的準備過程中去除光纖的緩沖層時,我們推薦T06S13作為剝纖工具。


    Item #

    Operating Wavelength

    MFD @ 1550 nm

    Cladding

    Coating

    Cut-OffWavelength

    NA

    Core Index

    Cladding Index

    Proof Test

    GF1B

    1500 - 1600 nm

    10.4 ± 0.8 µm

    125 ± 1.0 µm

    245 ± 15 µm

    1260 ± 100 nm

    0.13

    Calla

    Calla

    ≥100 kpsi


    關于這些光纖的折射率信息,請聯系技術支持。我們不能在網站上公布此數據。



    產品型號

    公英制通用

    GF1B

    低損耗光敏光纖,1500 - 1600 nm,模場直徑10.4 µm,數值孔徑0.13


    包層模式偏移光敏光纖

    高光敏特性

    高包層模式偏移:9 nm(典型值)

    嚴格的公差

    包層模式偏移光纖設計用于提高包層模式偏移。在寫入兩個或者多個彼此相鄰的(通常偏移9納米)光柵時,包層模式偏移能增強光纖的性能。包層模式偏移光纖在和工業標準通訊光纖熔接時損耗很低。

    在連接的準備過程中去除光纖的緩沖層時,我們推薦T06S13作為剝纖工具。


    Item #

    Operating Wavelength

    MFD @ 1550 nm

    Cladding

    Coating

    Cut-OffWavelength

    NA

    Core Index

    Cladding Index

    Proof Test

    GF4A

    1500 - 1600 nm

    4.0 ± 0.3 µm

    125 ± 1.5 µm

    250 ± 20 µm

    1350 ± 100 nm

    0.30

    Calla

    Calla

    ≥100 kpsi


    關于這些光纖的折射率信息,請聯系技術支持。我們不能在網站上公布此數據。


    產品型號

    公英制通用

    GF4A

    包層模式偏移光敏光纖,1500 - 1600 nm,模場直徑4.0 µm,數值孔徑0.30


    選擇截止光敏光纖

    高光敏特性

    和傳輸光纖的熔接損耗低

    價格低廉、高產量的生產

    PS1060光敏光纖設計用于提供對紫外光的高光敏性。該光纖是為用于泵浦穩定器或輸出波長為980到1060納米范圍的二極管的光纖布拉格光柵寫入而特別設計的。PS1060也可用于耦合器應用。

    在連接的準備過程中去除光纖的緩沖層時,我們推薦T06S13作為剝纖工具。

    Item #

    Operating Wavelength

    MFD @ 1060 nm

    Cladding

    Coating

    Cut-OffWavelength

    NA

    Core Index

    Cladding Index

    Proof Test

    PS1060

    980 - 1060 nm

    6.2 ± 0.8 µm

    125 ± 1.5 µm

    245 ± 15 µm

    920 ± 50 nm

    0.13

    Calla

    Calla

    ≥100 kpsi


    關于這些光纖的折射率信息,請聯系技術支持。我們不能在網站上公布此數據。

    產品型號

    公英制通用

    PS1060

    光敏選擇截止光纖,980 - 1060 nm,模場直徑6.2 µm,數值孔徑0.13


    保偏光敏光纖

    低衰減

    所有保偏特性都伴隨改善的光敏特性

    批次*性高

    PS-PM980設計用于980納米泵浦激光二極管、耦合器和復用器,提供改善的光敏特性,能夠大幅減少寫入時間,同時具有出色的保偏特性。

    在連接的準備過程中去除光纖的緩沖層時,我們推薦T06S13作為剝纖工具。

    Item #

    Operating Wavelength

    MFD @ 980 nm

    Cladding

    Coating

    Cut-OffWavelength

    NA

    Core Index

    Cladding Index

    Proof Test

    PS-PM980

    970 - 1550 nm

    6.6 ± 1.0 µm

    125 ± 1.0 µm

    245 ± 15 µm

    900 ± 70 nm

    0.12

    Calla

    Calla

    ≥100 kpsi

    關于這些光纖的折射率信息,請聯系技術支持。我們不能在網站上公布此數據。

    產品型號

    公英制通用

    PS-PM980

    保偏光敏光纖,970 - 1550 nm,模場直徑6.6 µm


    損傷的光纖端面

    Thorlabs光敏單模光纖


      留言框

      • 產品:

      • 您的單位:

      • 您的姓名:

      • 聯系電話:

      • 常用郵箱:

      • 省份:

      • 詳細地址:

      • 補充說明:

      • 驗證碼:

        請輸入計算結果(填寫阿拉伯數字),如:三加四=7

      聯系我們

      地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
      24小時在線客服,為您服務!

      版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

      在線咨詢
      QQ客服
      QQ:17041053
      電話咨詢
      0510-68836815
      關注微信
      国产成人久久精品二区三区,国产91青青成人a在线,亚洲精品成人无码中文毛片不卡,成人精品一区二区三区中文字幕

      <label id="kuzok"></label>

    • 
      
      <span id="kuzok"><noframes id="kuzok"><label id="kuzok"></label>
    • <li id="kuzok"><tbody id="kuzok"><th id="kuzok"></th></tbody></li>
      <label id="kuzok"></label>
      <rt id="kuzok"></rt>
      <bdo id="kuzok"><meter id="kuzok"></meter></bdo>

      <center id="kuzok"><optgroup id="kuzok"></optgroup></center>
      美女性感视频久久| 成人在线一区二区三区| 国产成人亚洲精品狼色在线| 国产河南妇女毛片精品久久久 | 天堂蜜桃一区二区三区| 91亚洲男人天堂| 美女免费视频一区二区| 国产一区二区调教| 91亚洲男人天堂| 久久99精品网久久| 成人中文字幕电影| 美女任你摸久久| 成人不卡免费av| 久久99国产精品久久99| 成人禁用看黄a在线| 看片的网站亚洲| www.在线成人| 狠狠v欧美v日韩v亚洲ⅴ| 不卡一区二区中文字幕| 久久国产夜色精品鲁鲁99| 国产成人精品亚洲日本在线桃色| 日韩在线卡一卡二| 成人午夜短视频| 久久99国产精品免费网站| 国产精品伊人色| 麻豆极品一区二区三区| 99天天综合性| 国产成人av一区| 麻豆一区二区三区| 日韩在线一区二区| 成人av网站大全| 国产精品自拍毛片| 九九国产精品视频| 美女精品一区二区| 国产成人8x视频一区二区| 91啦中文在线观看| 97精品国产露脸对白| 91片黄在线观看| 91首页免费视频| 日本中文字幕不卡| 激情综合色丁香一区二区| 国产精品综合av一区二区国产馆| 国产成人综合视频| 97久久超碰国产精品电影| 日韩精品91亚洲二区在线观看| 日韩国产高清影视| 久久国产生活片100| 国产一区二区福利视频| 成人午夜视频免费看| 91在线视频播放地址| 日本成人在线电影网| 久久精品国产精品亚洲综合| 国产伦理精品不卡| 99久久久免费精品国产一区二区| 日本在线不卡一区| 国产伦理精品不卡| 97se亚洲国产综合自在线| 奇米一区二区三区| 国产精品原创巨作av| 99久久免费视频.com| 日韩av不卡一区二区| 激情成人午夜视频| 99麻豆久久久国产精品免费优播| 人妖欧美一区二区| 国产v综合v亚洲欧| 男人的天堂久久精品| 国产成人综合精品三级| 日韩中文字幕av电影| 极品尤物av久久免费看| 91在线观看高清| 国产自产v一区二区三区c| 成人精品免费网站| 激情深爱一区二区| 91影院在线免费观看| 国产精品自拍在线| 日本视频中文字幕一区二区三区| 国产高清久久久久| 久久精品国产久精国产爱| aa级大片欧美| 国产精品一区二区在线播放 | 丁香婷婷综合色啪| 麻豆精品精品国产自在97香蕉| 成人性生交大片免费看中文网站| 蜜桃视频免费观看一区| eeuss影院一区二区三区| 国产在线播精品第三| 日日夜夜精品视频免费| 成人深夜在线观看| 久久福利视频一区二区| 91美女福利视频| 成人午夜av影视| 国产剧情在线观看一区二区| 美女免费视频一区| 日韩精品免费视频人成| hitomi一区二区三区精品| 国产盗摄视频一区二区三区| 精品亚洲免费视频| 麻豆免费精品视频| 奇米影视一区二区三区| 日韩高清在线一区| 日韩成人午夜精品| 91丨porny丨中文| www.成人在线| 成人福利视频网站| 丁香一区二区三区| 国产精品中文字幕日韩精品 | 国内久久精品视频| 国内成+人亚洲+欧美+综合在线| 日韩成人av影视| 天堂一区二区在线| 天堂av在线一区| 石原莉奈在线亚洲三区| 日韩中文字幕麻豆| 蜜桃视频一区二区三区在线观看| 日韩电影一区二区三区四区| 日韩高清国产一区在线| 蜜臀av一区二区三区| 美女网站视频久久| 国产在线乱码一区二区三区| 国产麻豆日韩欧美久久| 国产精品一区二区三区乱码| 国产精品538一区二区在线| 国内成人精品2018免费看| 久久 天天综合| 国产酒店精品激情| 成人激情av网| 日本欧美久久久久免费播放网| 日本免费在线视频不卡一不卡二| 蜜臀av性久久久久av蜜臀妖精| 久久精品国产亚洲一区二区三区| 国产在线视视频有精品| 成人小视频免费观看| eeuss国产一区二区三区 | 国产在线日韩欧美| 成人美女在线观看| 日韩激情中文字幕| 国产资源精品在线观看| 丰满亚洲少妇av| 99精品国产一区二区三区不卡| 日韩国产欧美三级| 国产精品一区二区在线观看不卡 | 成人福利电影精品一区二区在线观看 | 青青草原综合久久大伊人精品优势 | 日欧美一区二区| 精品制服美女丁香| 东方欧美亚洲色图在线| 91女神在线视频| 精品一区中文字幕| 高清国产一区二区| 免费精品视频最新在线| 国产aⅴ综合色| 蜜臀91精品一区二区三区| 国产成人在线视频网址| 日本欧美一区二区| 成人免费毛片片v| 久久国产精品区| 97精品国产97久久久久久久久久久久 | 99视频精品全部免费在线| 蜜臀久久久久久久| av中文字幕一区| 国产剧情一区二区三区| 首页欧美精品中文字幕| 成人午夜大片免费观看| 九九视频精品免费| 91在线看国产| 成人精品视频网站| 国产一区二区在线电影| 蜜桃久久久久久| 91啦中文在线观看| 成人美女视频在线看| 激情另类小说区图片区视频区| 91在线码无精品| 成人激情文学综合网| 国产乱色国产精品免费视频| 老司机一区二区| 青青草原综合久久大伊人精品优势| 成人国产精品免费观看视频| 国产成人综合在线| 国产高清视频一区| 国产伦精品一区二区三区在线观看 | 国产一区二区免费看| 蜜桃视频一区二区| 日韩精品久久久久久| 99久久er热在这里只有精品66| 国产91丝袜在线播放0| 国产精品99久久久久久宅男| 精品一区二区久久| 九一久久久久久| 精品一区二区在线观看| 麻豆91在线播放免费| 日本中文字幕一区二区有限公司| 99r国产精品| 99精品国产热久久91蜜凸| 成人激情小说网站| www.欧美.com| 91在线国产福利| 91免费在线视频观看| caoporm超碰国产精品| 99久久er热在这里只有精品66| 国产成人综合在线播放| 成人免费高清视频在线观看| kk眼镜猥琐国模调教系列一区二区 | 麻豆成人在线观看| 精品影视av免费| 国产一区美女在线| 国产成人免费视频| 成人aa视频在线观看| 天堂一区二区在线| 久久精品国产成人一区二区三区 | 国产 欧美在线| 成人免费毛片嘿嘿连载视频| av在线播放一区二区三区| 99re这里只有精品6| 青椒成人免费视频| 国产精品影视天天线| 大桥未久av一区二区三区中文| 成人网在线播放| 精品亚洲国内自在自线福利| 免费观看在线色综合| 国产一区二区中文字幕| 国产91丝袜在线播放0| 91日韩精品一区| 韩国一区二区在线观看| 懂色av一区二区三区免费看| 日韩中文字幕不卡| 国产乱一区二区| 91在线免费播放| 狠狠久久亚洲欧美| 91在线视频网址| 激情综合色综合久久综合| 成人免费视频免费观看| 蜜臀av亚洲一区中文字幕| 国产自产视频一区二区三区| 成人aa视频在线观看| 老司机免费视频一区二区| 国产99久久久国产精品潘金网站| 91看片淫黄大片一级在线观看| 激情深爱一区二区| www.成人在线| 国产美女精品在线| 日韩av网站在线观看| 懂色av一区二区三区免费观看| 日韩精品一级二级| 成人免费不卡视频| 国模一区二区三区白浆| 91网站视频在线观看| 国产乱子轮精品视频| 青青草成人在线观看| 成人av网站免费观看| 国产真实精品久久二三区| 日韩二区在线观看| 成人动漫在线一区| 国产一区二区三区四区五区美女| 日日夜夜一区二区| www.成人网.com| 粉嫩一区二区三区在线看| 精品一区二区三区在线播放| 日韩精品欧美成人高清一区二区| 成人综合在线视频| 国产二区国产一区在线观看| 精品无码三级在线观看视频| 欧美a一区二区| 日韩精品成人一区二区在线| 99久久精品情趣| av资源网一区| av高清久久久| 99国产精品国产精品毛片| 国产馆精品极品| 国产精品一品视频| 国产综合久久久久影院| 九九国产精品视频| 精品一区二区三区免费毛片爱| 美女网站视频久久| 免费看欧美美女黄的网站| 日韩中文字幕91| 日本不卡在线视频| 蜜桃91丨九色丨蝌蚪91桃色| 免费人成精品欧美精品| 日本v片在线高清不卡在线观看| 91色porny| 欧美a级一区二区| 美女视频网站久久| 精品一区二区三区在线观看国产| 狠狠色丁香婷婷综合久久片| 国产乱淫av一区二区三区| 国产精品中文字幕日韩精品| 国产成人免费在线| av男人天堂一区| 日本欧洲一区二区| 久久成人麻豆午夜电影| 国产精品综合二区| 成人激情免费网站| 91蜜桃传媒精品久久久一区二区| 日韩成人av影视| 美女视频黄久久| 国产一区二区三区免费在线观看| 国产成人一区在线| proumb性欧美在线观看| 日本亚洲视频在线| 国产一区在线精品| 成人精品在线视频观看| 丝袜美腿亚洲综合| 精品一区二区三区影院在线午夜| 国产乱人伦偷精品视频不卡| 成人福利视频网站| 蜜桃视频一区二区三区| 国产精品一区二区果冻传媒| gogo大胆日本视频一区| 美女一区二区视频| 成人在线视频一区二区| 日韩电影免费在线| 国产成人日日夜夜| 日韩成人免费电影| 国产成人精品网址| 日产国产欧美视频一区精品| 国产成人高清视频| 蜜桃视频在线观看一区| 成人丝袜18视频在线观看| 男女性色大片免费观看一区二区| 国产一区二区三区蝌蚪| 丝袜国产日韩另类美女| 国产成人免费视频一区| 日韩av一二三| 成人高清伦理免费影院在线观看| 久久激情五月激情| 99综合电影在线视频| 国产一区在线看| 日韩av成人高清| 成人免费视频网站在线观看| 蜜臀av性久久久久av蜜臀妖精| 国产伦精品一区二区三区视频青涩 | 国产91丝袜在线播放| 日本中文字幕一区二区视频| 岛国av在线一区| 精品一区在线看| 视频一区中文字幕国产| 丁香六月久久综合狠狠色| 久久91精品久久久久久秒播| 91视频com| 福利视频网站一区二区三区| 美国毛片一区二区| 91丝袜美腿高跟国产极品老师| 国产白丝网站精品污在线入口| 美腿丝袜亚洲综合| 91美女蜜桃在线| av中文一区二区三区| 国产91在线观看| 国产麻豆欧美日韩一区| 久久97超碰国产精品超碰| 日韩成人av影视| 视频在线观看一区| 成人av在线播放网址| 国产白丝精品91爽爽久久| 国内一区二区在线| 麻豆91精品91久久久的内涵| 日本一区中文字幕| 日日欢夜夜爽一区| a亚洲天堂av| 成人av综合在线| 成人午夜电影小说| 懂色av一区二区三区免费观看 | 成人精品国产一区二区4080| 国产一区二区0| 国产伦精品一区二区三区视频青涩| 毛片av一区二区| 久久99精品久久久久久动态图 | 91丨国产丨九色丨pron| www.激情成人| zzijzzij亚洲日本少妇熟睡| gogo大胆日本视频一区| 99精品国产91久久久久久| 97国产一区二区| 91在线观看高清| 日产国产高清一区二区三区| 美女在线视频一区| 久久99精品国产麻豆不卡| 国产麻豆日韩欧美久久| 国产91精品入口| 99这里只有精品| 日韩电影一二三区| 久久国产夜色精品鲁鲁99| 国产一区二区三区精品欧美日韩一区二区三区 | 国产精品自拍在线| 国产**成人网毛片九色| 成人久久视频在线观看| 99久久国产免费看| 男女男精品视频| 国产一区二区成人久久免费影院| 国产美女av一区二区三区| 国产v日产∨综合v精品视频| 99久久久国产精品| 热久久一区二区| 国产福利一区在线| 91丨九色丨黑人外教| 久久精品国内一区二区三区| 国产盗摄一区二区三区| 91免费版在线看| 国产原创一区二区三区| 99亚偷拍自图区亚洲| 美国十次了思思久久精品导航|